Combining Inhibitor Resistance-conferring Mutations in Cytochrome b Creates Conditional Synthetic Lethality in Saccharomyces cerevisiae.

نویسندگان

  • Martina G Ding
  • Jean-Paul di Rago
  • Bernard L Trumpower
چکیده

The mitochondrial cytochrome bc(1) complex is an essential respiratory enzyme in oxygen-utilizing eukaryotic cells. Its core subunit, cytochrome b, contains two sites, center P and center N, that participate in the electron transfer activity of the bc(1) complex and that can be blocked by specific inhibitors. In yeast, there are various point mutations that confer inhibitor resistance at center P or center N. However, there are no yeast strains in which the bc(1) complex is resistant to both center P and center N inhibitors. We attempted to create such strains by crossing yeast strains with inhibitor-resistant mutations at center P with yeast strains with inhibitor-resistant mutations at center N. Characterization of yeast colonies emerging from the cross revealed that there were multiple colonies resistant against either inhibitor alone but that the mutational changes were ineffective when combined and when the yeast were grown in the presence of both inhibitors. Inhibitor titrations of bc(1) complex activities in mitochondrial membranes from the various yeast mutants showed that a mutation that confers resistance to an inhibitor at center P, when combined with a mutation that confers resistance to an inhibitor at center N, eliminates or markedly decreases the resistance conferred by the center N mutation. These results indicate that there is a pathway for structural communication between the two active sites of cytochrome b and open new possibilities for the utilization of center N as a potential drug target.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recapitulation in Saccharomyces cerevisiae of cytochrome b mutations conferring resistance to atovaquone in Pneumocystis jiroveci.

Pneumocystis jiroveci (human-derived P. carinii) is an opportunistic pathogenic fungus which causes pneumonia and is life-threatening in immunocompromised individuals. Spontaneously acquired resistance to atovaquone, a hydroxynaphthoquinone that is used to treat P. jiroveci infections, was linked to mutations in the mitochondrially encoded cytochrome b gene. Because P. jiroveci cannot be easily...

متن کامل

Investigating the Qn site of the cytochrome bc1 complex in Saccharomyces cerevisiae with mutants resistant to ilicicolin H, a novel Qn site inhibitor.

The cytochrome bc1 complex resides in the inner membrane of mitochondria and transfers electrons from ubiquinol to cytochrome c. This electron transfer is coupled to the translocation of protons across the membrane by the protonmotive Q cycle mechanism. This mechanism topographically separates reduction of quinone and reoxidation of quinol at sites on opposite sites of the membrane, referred to...

متن کامل

Molecular basis of Toxoplasma gondii atovaquone resistance modeled in Saccharomyces cerevisiae.

0 d ondii is a widespread disease affecting primarily immunocomromised and pregnant individuals [1]. Atovaquone is a recently ntroduced anti-malarial compound with broad spectrum activty against various apicomplexan parasites [2–5] including T. ondii [6]. Approved by the FDA in 1995, this drug is a potent nd specific inhibitor of the cytochrome bc1 complex [7], an ssential respiratory enzyme pr...

متن کامل

Introduction of cytochrome b mutations in Saccharomyces cerevisiae by a method that allows selection for both functional and non-functional cytochrome b proteins.

We have previously used inhibitors interacting with the Qn site of the yeast cytochrome bc(1) complex to obtain yeast strains with resistance-conferring mutations in cytochrome b as a means to investigate the effects of amino acid substitutions on Qn site enzymatic activity [M.G. Ding, J.-P. di Rago, B.L. Trumpower, Investigating the Qn site of the cytochrome bc1 complex in Saccharomyces cerevi...

متن کامل

Synthetic interactions of the post-Golgi sec mutations of Saccharomyces cerevisiae.

In the budding yeast Saccharomyces cerevisiae, synthetic lethality has been extensively used both to characterize interactions between genes previously identified as likely to be involved in similar processes as well as to uncover new interactions. We have performed a large study of the synthetic lethal interactions of the post-Golgi sec mutations. Included in this study are the interactions of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 13  شماره 

صفحات  -

تاریخ انتشار 2009